
 Web-scale systems
according to Netflix

Kjell Jørgen Hole
Simula@UiB

Bergen, Norway 10 March 2015

Web-scale (software) solutions grow without introducing bottlenecks that
require periodic re-designs. This talk argues that web-scale solutions should
be implemented in public clouds and outlines how to create solutions with
very high availability, scalability, and performance. Netflix’s cloud-based,
video streaming system illustrates important insights.

Overview

• Introduction to web-scale solutions

• Web-scale solutions in the cloud

• Solutions with very high uptime

2

Web-scale solutions

3

This section introduces non-functional requirements for web-scale solutions
and explains why “traditional” monolithic solutions have problems
satisfying these requirements.

Non-functional requirements

• A customer-facing web-scale solution must have

• high availability (99.99%), i.e. very little downtime

• large scalability (tens of millions of customers)

• high performance (low-latency responses)

4

Availability: 99.99% availability corresponds to about 53 minutes of
downtime each year; often referred to as four nines of availability.
Scalability: refers to the number of users who have a positive experience.
Performance: the experience of an individual user. Often determined by
measuring response time (latency).

Everything is broken

Hardware will fail
slow change
large scale

Telcos

Everything is broken
rapid change
large scale

Web-scale
Everything works

slow change
small scale

Enterprise IT

Software will fail
rapid change
small scale

Startups

Rate of change

Sc
al

e

5
Fig. from Netflix

The rate of failure increases as a system scales and the number of changes
increases. It is particularly challenging to create a high-availability web-scale
system with a massive hardware platform, millions of users, and rapid
innovation.

Monolithic solutions
• Advantages

• good scalability using multiple
servers and load balancers

• low latency because modules  
can communicate efficiently

• Disadvantages

• insufficient availability due to
cascading failures

• many dependencies make it hard
to upgrade software quickly

6

Monolithic
solution

Fig. from Netflix

A monolithic solution is a large software application that is compiled into a
single executable. Because a monolithic solution contains very many lines
of source code, the solution takes a long time to compile, thus, reducing
the productivity of the developers. Furthermore, a single executable takes
a long time to start, reducing the availability of the solution. Finally, it is
cumbersome to make changes to a solution because it is necessary to
recompile the code and deploy a new executable. A cascading failure
occurs when a local failure propagates over a solution due to tight coupling
between its modules. The tight integration of the modules in a monolithic
solution makes it fragile to cascading failures. An memory leakage is an
example of a local failure that causes a systemic failure because the single
executable will crash when there is no more memory available.

Problem: module dependencies

7

. . .module
99.99%

module
99.99%

module
99.99%

Direction of
dependency

Local
uptime

module

Fig. from Netflix

The figure illustrates module dependencies in a monolithic solution.

Overall availability

• Assume that a module failure leads to system failure

• 1000 modules with 99.99% availability each

• The overall system availability is 
 
 0.9999^1000 ≈ 0.90

8

90% availability corresponds to about 36.5 days of downtime per year.

Break dependencies

Isolate local failures—failure in one module
should never result in cascading failure taking
down the whole system

9

If the dependencies are not removed, then the 1000 modules must each
have 99.99999% availability to achieve an overall availability of 99.99%.

Need modules with weak links

10

Breaks and
isolates failure

While the concept of “modules” is both well understood and much used,
the concept of “weak links” is much less understood and used. Later, we’ll
discuss how the circuit breaker pattern realizes “weak links.”

Need redundancy and diversity

11

Identical modules

Lean system Redundant system
Redundant and
diverse system

Different
modules

Nearly equal functionality
and different realizations

While “redundancy” and “diversity” are well-known concepts, they have
only seen limited use in “traditional” computer centers because of the
significant cost needed to develop and run multiple implementations of the
same functionality.

Ideas to break dependencies

• Modules

• Weak links

• Redundancy

• Diversity

12

Note that these very general concepts (abstract ideas) can be applied to all
kind of systems, not only web-scale systems.

Web-scale solutions
in the cloud

13

This section explains why a system’s modules should be implemented as
micro-services in a public cloud.

Cloud infrastructure

14

Amazon Web Services (AWS) consists of Regions in different parts of the
world. Each Region contains multiple Zones, where a Zone corresponds to
a huge datacenter. AWS is steadily expanding their global infrastructure to
help customers achieve lower latency and higher throughput, and to ensure
that customer data resides only in the Region they specify.

Virtualization
Customer Customer

VM VM VM VM VM

Hypervisor

Policy boundary

Single physical machine
15

A hypervisor is computer software that runs Virtual Machines (VMs). Each
VM is guest machine. The hypervisor presents the guest Operating Systems
(OSs) with a virtual operating platform and manages the execution of the
guest OSs. Multiple instances of different OSs may share the virtualized
hardware resources.

Why cloud?
• Availability: The cloud provides a cost-effective way

to introduce the modules, weak links, redundancy,
and diversity needed to break dependencies

• Scalability: Server virtualization supports the needed
scalability

• Performance: The use of multiple cloud regions
facilitate low-latency service all over the world

16

Why public cloud?

• Public cloud providers divide the infrastructure
cost over very many customers making it far less
expensive to use a public cloud than to build
your own private cloud

17

Pay as you go is a billing method that is implemented in cloud computing
and geared toward organizations, especially start-ups. An organization is
only billed for the computing resources it provisions. Hence, the cost is
small when the organization has few customers and only starts to grow as
the organization attracts more users. This billing method lets start-ups
compete with large established players.

Need cloud-native solution

18

Monolithic
solution

Fig. from Netflix

We cannot move a tightly-coupled solution into the cloud an expect the
availability to increase. Instead, we need a cloud-native solution that leverages
cloud-platform properties for scaling and performance; uses non-blocking
communication in loosely coupled architecture; handles upgrades, scaling, and
failure events without system downtime; and monitors solution as virtual machines
come and go.

Modules: 
 micro-services in the cloud

• Netflix’s streaming solution consists of hundreds of
micro-services that run in Amazon’s cloud

• The services communicate over network connections
via a standardized, lightweight protocol

19

Micro-services are nothing new. They are actually a realization of the Unix
philosophy of creating small, single-purpose programs that are "piped"
together to achieve a desired result. Netflix has hundreds of micro-services
running side-by-side in each cloud region. Some of the services are
updated often, while others remain unchanged for long periods.

Properties of micro-services

• The functionality fulfills a single responsibility

• Easy to test, upgrade, and replace

• Fast startup and shutdown

20

A micro-service is a small standalone process that does one thing well. Together,
micro-services decouple the functionality of a large application into highly
independent chunks of code. Micro-services enhance fault tolerance, enable an
application to scale, and make it possible for a solution to evolve.

Properties of …

• Services belonging to the same solution can be
implemented in different programming languages

• Collections of micro-services can be updated
independently of each other

21

Micro-service architecture

22
Fig. from abdullin.com

All communication between micro-services are via network calls, to enforce
the separation between the services and avoid the problems of tight
coupling. (Figure from http://abdullin.com/post/how-micro-services-
approach-worked-out-in-production/)

Netflix architecture

23
Fig. from Netflix

A micro-service solution mimics nature. The whole system is constantly
evolving without the risk of downtime associated with monoliths. In
particular, services come and go. Micro-service solutions are “living
software” enabling us to get rid of the problem with legacy software
because it is easy to remove old services and create new once.

Micro-service solutions
in the cloud with very

high uptime

24

In a rapidly changing world, it is not possible to plan everything in advance.
Large ICT solutions need to have an evolutionary architecture that
facilitates rapid change and supports high availability at the same time.
Hence, we must abandon monoliths and split their functionality into more
of less independent processes.

How to isolate failures 
(according to Netflix)

1. Use micro-services and introduce weak links, redundancy,
and diversity to isolate the impact of service failures

2. Induce failures to learn how to make a system increasingly
robust to cascading failures

25

As we shall see, the company actually induces failures in their production
system.

Weak links are circuit breakers

26

Weak links can be compared to circuit breakers.

Circuit breaker

• Netflix’s Hystrix tool utilizes a “circuit-breaker”
method to shut down requests to services when their
latencies or number of failures become too large

• Fallbacks are provided wherever feasible to protect
users from failure

27

https://github.com/Netflix/Hystrix/wiki
For more information, read about the CircuitBreaker pattern in Michael
Nygard’s book “Release It!”

Circuit breaker

28

Success

Failure below
threshold

Failure,
set timeout

Stop
call

Failure,
reset
timeout

Success

Timeout
completed

Open

Half open

Closed

The circuit is closed and service A calls service B. If there is no failure, then
the circuit remains closed and A is allowed to connect to B. Should a failure
occur, the fraction of failures is updated. When the fraction becomes larger
than a threshold, the circuit is opened and a timer is started. The circuit
remains open until a timeout period is completed. Then the circuit is
closed on a trial basis and A is again allowed to connect to B. If there is still
a failure, then the circuit is re-opened, else it remains closed.

Redundancy via replacement

Redundant services with
timeout and failover

29

Timeout

dependence

dependent
service

Fig. from Netflix

Micro-services are designed in to allows multiple instances to run behind a
load balancer. If one instance goes down, then the calling instance can
simply connect to another instance. An instance failure is often due to
hardware error or network failure.

Default fallback response
Timeout with fallback default
response used when all
instances are affected

30

Timeout &
default

response

dependent
system

dependence

Fig. from Netflix

When there is a software error, all instances are affected and it is necessary
to use a default response to contain the error. A careful analysis is needed
to determine the appropriate response. The default response reduces the
dependency between the instances.

Chaos Monkey

The tool Chaos Monkey
disables random production
instances to make sure the
Netflix solution survives this
common type of failure without
any customer impact

31

The default instance groupings that Chaos Monkey uses for selection is
Amazon's Auto Scaling Group (ASG). Within an ASG, Chaos Monkey will
select an instance at random and terminate it. The ASG should detect the
instance termination and automatically bring up a new instance.

Latency monkey

Latency Monkey tests
what happens when the
delay becomes too long

short timeout

dependent
service

longer
timeout

dependence

32

dependent
service

Fig. from Netflix

The shutdown of a low-level dependency can lead to a longer timeout at a
higher layer, causing a cascading failure. There is no simple answer to this
multi-level dependency problem, each case must be carefully studied.

Learning from failures (1)

• Netflix uses Chaos Monkey and Latency Monkey
to test that the solution isolates local failures

33

Netflix induces failures in the production system to detect fragilities and
learn how to improve the system’s robustness to cascading failures. The
company works to understanding what went wrong rather than who to
blame for a failure.

Zone isolation

Chaos Gorilla 
generates zone
failures

34

Local
balancer

Zone A Zone B

dependent
system

dependencedependence

dependent
system

Fig. from Netflix

Netflix uses three zones in each region to limit the consequences of
firmware failures, certain serious software bugs, power failures, and severe
network failures. The zones correspond to different data centres. Note that
the load balancer is a single point of failure.

Region isolation

35

Local
balancer

Local
balancer

DNS
Region W Region E

Chaos Kong is used to test region failures Fig. from Netflix

DNS (Domain Name Server) splits traffic load i two halves. To handle
infrastructure failures, Netflix uses multiple regions and switch users to a
new region when needed.

Learning from failures (2)

• Netflix uses Chaos Gorilla and Chaos Kong
to verify that their solution can handle major
problems with the cloud infrastructure

36

Diversity

• Two software programs are diverse if they have
(nearly) the same functionality, but different
implementations

37

Diversity via “canary push”

• Since a web-scale solution supports users all over
the world, there is no good time to take down the
system and upgrade its software

• An alternative is to introduce new code  
by keeping both old and new code  
running and switch user requests to  
new code

38

This process is possible in the cloud because an application owner can
easily double the use of resources for a limited period, e.g. a 24 hour cycle.

Simple canary push

39

Timeout

Canary
instance

new codedependence

dependent
system

Fig. from Netflix

The stability of a “canary” cannot be fully evaluated before it gets a heavy
traffic load in the production system.

Red/black deployment

40

dependence
v2.2

dependent
system

dependence
v2.3

Fallback
to old
code

Fig. from Netflix

Use enough copies of new code in an auto-scaling group to carry the load.
Keep the old code to ensure that we can handle peak load if there is a
problem with the new code.

Standby blue system
• Software error in both red and black deployment

• Blue system is an indecently  
authored system delivering 
a minimal solution

• Used when all resent versions 
of the code fail

dependent
system

41

dependence
v2.3

Fallback
to static
version

Static
reference
system

Fig. from Netflix

Several versions of the code may contain a “time bomb” that only goes off
after a long period. Since the blue system is non-adaptive or static, it is
easier to scale than the regular code.

Summary

• Cloud-based solutions with micro-service
architectures can provide higher availability
than today’s monolithic applications

42

Observation: Norwegian banks believe they will save billions when Norway
gets rid of cash. However, the banks will have to pay for new payment
systems based on cloud technology to achieve the availability, scalability,
and performance required by a “cash free society.”

General principles
• Modularization

• Weak links

• Redundancy

• Diversity

• Learn from induced failures

43

Design principles

Operational principle

While we have only discussed the above principles in a cloud context, they
are also valid outside the cloud.

References
• techblog.netflix.com

• martinfowler.com/articles/microservices.html

• highscalability.com/blog/2014/4/8/microservices-not-a-free-
lunch.html

• S. Newman, Building Microservices, O'Reilly Media, 2015

• M.T. Nygard, Release It! Pragmatic Bookshelf, 2007

• M.J. Kavis, Architecting the Cloud, Wiley, 2014

• N. Taleb, Antifragile: Things That Gain from Disorder, Random
House, 2012

44

Thank you!

45

